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Adaptive techniques for approximating 
solutions to 1st-order initial-value problems

Introduction

• In this topic, we will

– Describe adaptive algorithms for initial-value problem (IVP) 
solvers

– List the algorithms we will see in this topic

– Discuss making dynamic changes to the step size

• This will include limitations

– Discuss appropriate data structures for such algorithms
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Iterative methods

• In order to estimate the error, previously
we had to approximate the solution with n points,
and then again with 2n points

– Our error analysis suggested the error should drop by h, h2 or h4, 
depending on the algorithm

• This potentially requires us to do a significant amount of work!
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Adaptive techniques

• Instead, we will use the following approach:

– At each step,
we will try to estimate the error of the next approximation
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Adaptive techniques

• Thus, we proceed as follows:

– Given an approximation yk at a point tk,

• Use two algorithms, one significantly more precise (zk+1) than 
the other (yk+1)
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Adaptive techniques

• Neither zk+1 nor yk+1 is exact, but because zk+1 is much more 
accurate, then |zk+1 – yk+1| is a not-unreasonable approximation of 
the error of yk+1

– Like before, to be conservative, we’ll over-estimate the error:
2|zk+1 – yk+1|
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Adaptive techniques

• Because eabs is the maximum error we are allowed to accept per 
unit time, the maximum error we are willing to accept is eabsh

– If 2|zk+1 – yk+1| < eabsh, we’re okay

– Otherwise, we need to try again with a smaller h…
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Adaptive techniques

• Thus, we have two possibilities:

– If 2|zk+1 – yk+1| < eabsh, our approximation is too accurate

• We could use a larger value of hwith the next step

– If 2|zk+1 – yk+1| ≥ eabsh, the error is too large

• We need to try again with a smaller value of h
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Adaptive techniques

• Questions:

– In the first case, how much larger can we make h?

– In the second case, how much smaller must we make h?

• Answers:

– We will calculate a scaling factor a

• If a > 1, then h can be made larger, so continue

• If a ≤ 1, then h is too large, so try again

• Question:

– Isn’t ah the “ideal” step size?

• Answer:

– It approximates the ideal step size for the current point

– Issue: The chance is 50-50 that the next ideal step size smaller

– Solution: Multiply a by 0.9
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Looking ahead

• We will look at two adaptive algorithms:

– In order to introduce this concept,
we will look at using both Euler and Heun

– The second algorithm is the Dormand-Prince algorithm

Adaptive algorithms for 1st-order initial-value problems

10

9

10



3/15/2021

6

Warnings

• We will determine better values of h,
however, these algorithms will require:

– A minimum value of hmin to use

– A maximum value of hmax based on the problem at hand

• If h is too large, we may lose detail in the differential equation

– An initial value of h to use

• We will use                    , the geometric mean

• Also, while we’d like to get h to the ideal width,
we will be using approximations to change the size of h

– Again, being conservative:

• We will never let h be more than doubled with any step

• We will never let h be less than halved in any step
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Data structures?

• What data structures will we use for these algorithms?

– Problem: We don’t know how many steps we will require

– If we allocate an array, it may occur that:

• The array is far too large, so we have wasted memory

• The array is too small, and we must allocate a larger array and 
copy everything over…

– Doubling the array capacity may result in O(n) wasted 
memory

– Instead, the algorithm will use a data structure that:

• Allows O(1) insertions with all operations

• Has O(1) wasted memory

• That is, a queue!

– At the end, we will convert it back to an array

Adaptive algorithms for 1st-order initial-value problems

12

11

12



3/15/2021

7

Implementation

std::tuple<unsigned int, double *, double *, double *> adaptive_algorithm(

double f( double t, double y ), std::pair<double, double> t_rng, double y0,

std::pair<double, double> h_rng, double eps_abs

) {

assert( h_rng.first > 0.0 );

assert( h_rng.second > h_rng.first );

double h{ std::sqrt( h_rng.first *h_rng.second ) };

std::queue<double> qt{};

std::queue<double> qy{};

std::queue<double> qdy{};

qt.push( t_rng.first );

qy.push( y0 );

qdy.push( f( t_rng.first, y0 ) );
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Implementation

while ( qt.back() < t_rng.second ) {

bool found{ false };

do {

double y{ /* First approximation */ };

double z{ /* Second (better) approximation */ };

double a{ /* Calculate scaling factor for 'h' */ };

if ( (a > 1.0) || (h == h_rng.first) ) {

qt.push( qt.back() + h );

qy.push( z );

qdy.push( f( qt.back(), z ) );

found = true;

}

Adaptive algorithms for 1st-order initial-value problems

14

} while ( !found );
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Implementation

a *= 0.9;

if ( a >= 2.0 ) {

h *= 2.0;

} else if ( a <= 0.5 ) {

h *= 0.5;

} else {

h *= a;

}

if ( h < h_rng.first ) {

h = h_rng.first;

} else if ( h > h_rng.second ) {

h = h_rng.second;

}

} while ( !found );

}
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Implementation

unsigned int n{ static_cast<unsigned int>( qt.size() ) };

double  *ts = new double[n];

double  *ys = new double[n];

double *dys = new double[n];

for ( unsigned int k{0}; k < n; ++k ) {

ts[k] = qt.front();

qt.pop();

ys[k] = qy.front();

qy.pop();

dys[k] = qdy.front();

qdy.pop();

}

return std::make_tuple( n - 1, ts, ys, dys );

}
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Summary

• Following this topic, you now

– Understand what an adaptive IVP solver is

– Know we will use two different approximations

• The better approximation allows us to estimate the error
of the worse approximation

– Are aware we will introduce an Euler-Heun adaptive algorithm,
and then we will describe the Dormand-Prince method

– Understand that this will allow us to dynamically change the 
value of h

– Understand there are restrictions to both the magnitude of h and 
restrictions to any changes to h

– Are aware of data structure issues in implementations
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Colophon 

These slides were prepared using the Cambria typeface. Mathematical equations 
use Times New Roman, and source code is presented using Consolas.  
Mathematical equations are prepared in MathType by Design Science, Inc.

Examples may be formulated and checked using Maple by Maplesoft, Inc.

The photographs of flowers and a monarch butter appearing on the title slide and 
accenting the top of each other slide were taken at the Royal Botanical Gardens in 
October of 2017 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.
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Disclaimer

These slides are provided for the ECE 204 Numerical methods
course taught at the University of Waterloo. The material in it
reflects the author’s best judgment in light of the information
available to them at the time of preparation. Any reliance on these
course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility
for damages, if any, suffered by any party as a result of decisions
made or actions based on these course slides for any other purpose
than that for which it was intended.
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